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Using a density-functional framework, we investigate the vibrational spectra of vitreous SiO2 to determine
to what extent these spectra provide information about the medium-range structure of the oxide network. We
carry out a comparative study involving three model structures, which all feature a nondefective network of
corner-sharing tetrahedra but differ through their Si-O-Si bond-angle distributions and ring statistics. We first
address the results of typical diffraction probes. Fair agreement with experiment is achieved for the total
neutron and total x-ray structure factors of all models, indicating limited sensitivity of these structure factors to
the medium-range structure. The same consideration also applies to the Si-O and O-O partial structure factors.
At variance, the Si-Si partial structure factor is found to be highly sensitive to the Si-O-Si bond-angle distri-
bution. We then address typical vibrational spectra, such as the inelastic neutron spectrum, the infrared spectra,
and the Raman spectra. For the inelastic neutron spectrum and the infrared spectra, the comparison with
experiment is fair for all models, indicating poor sensitivity to the structural arrangement of tetrahedra. The
only noticeable exception is the feature at �800 cm−1 which shifts to higher frequencies with decreasing
Si-O-Si angles. At variance, the Raman spectra are shown to be very informative about the medium-range
organization of the network through their sensitivity to the concentrations of three-membered and four-
membered rings. Our study indicates that the considered experimental data are globally consistent with a
medium-range structure characterized by an average Si-O-Si bond angle of 148° and with small-ring concen-
trations as derived from the intensities of the experimental Raman defect lines. To describe the infrared and
Raman couplings, our work also introduces parametric models which reproduce well the spectra calculated
from first principles.
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I. INTRODUCTION

Vitreous silica �v-SiO2� is a technologically important
material, being a key component in both optical fibers1 and
Si-based microelectronic devices.2 From the fundamental
point of view, v-SiO2 has attracted attention as the archetypi-
cal model of a disordered network.3 These motivations have
contributed to making v-SiO2 one of best characterized ma-
terials through the application of a large variety of experi-
mental probes.

The short-range structure of v-SiO2 is fully characterized
by the occurrence of a well-defined tetrahedral structural
unit,4 consisting of a central silicon atom with oxygen atoms
at its vertices. The tetrahedra are attached to each other
through their corners, giving rise to an extended network.
The medium-range structure of v-SiO2 is less trivial. The
disorder is essentially carried by the broad distribution of the
intertetrahedral bond-angle parameter. The analysis of
diffraction5–7 and nuclear-magnetic-resonance data8,9 situate
the average Si-O-Si bond angle close to 150°. The medium-
range structure is further characterized by the ring
statistics.10 While such a characterization has long remained
a purely theoretical concept, it has recently been possible to
derive concentrations of three-membered and four-
membered rings from the experimental Raman spectrum.11,12

To acquire deeper insight into the structure of disordered
oxides beyond nearest neighbors, it is necessary to consider

experimental probes in addition to the typical diffraction
probes. A potentially informative set of data consists of the
vibrational spectra, such as the inelastic neutron spectrum,
the infrared spectra, the Raman spectra, and the hyper-
Raman spectra. However, the interpretation of vibrational
spectra in terms of structural correlations is not trivial and
requires accurate theoretical modeling. Such modeling ap-
proaches need to overcome several difficulties which include
the generation of viable model structures, the accurate deter-
mination of vibrational properties, and the access to the cou-
pling factors. For this scope, suitable modeling tools have
been developed within a density-functional framework, one
of the most noteworthy being the method consisting of ap-
plying finite electric fields through a Berry-phase
formulation.13 In the last decade, these modeling approaches
were at the origin of several successful applications to vitre-
ous materials, including SiO2,11,12,14–17 GeO2,18,19 B2O3,20

and GeSe2.21 The ultimate aim of such modeling approaches
is to determine a model structure which optimally describes
the full set of experimental data under consideration. It is
imagined that this scope can be achieved by the establish-
ment of a virtuous cycle including model generation, simu-
lation of measurable quantities, and comparison with experi-
ment.

In this work, we carry out a comprehensive investigation
of the structural and vibrational properties of v-SiO2 within a
density-functional framework. Particular attention is devoted
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to the comparison with experimental results. As far as the
more traditional structural probes are concerned, we address
the total neutron structure factor, the total x-ray structure
factor, and the partial structure factors. For the vibrational
properties, our study comprises the inelastic neutron spec-
trum, the dielectric constants, the real and imaginary parts of
the dielectric function, the energy-loss spectrum, the LO-TO
splittings, and the Raman spectra. The present work includes
a comparative study involving three model structures pre-
senting similar short-range order but different intertetrahe-
dral bond-angle distributions and ring statistics. More spe-
cifically, our study aims at identifying specific features in the
vibrational spectra which are informative about the medium-
range structure. For the purpose of the present work, we
considered a 144-atom model structure �model I� incorporat-
ing structural features inferred from previous investigations
with the aim of improving the comparison with the experi-
ment for the full set of vibrational spectra under consider-
ation. Finally, we conclude our study by deriving simple
parametric models which account for the infrared and Raman
couplings. The motivation for developing such models is
twofold. First, the description of the coupling factors in
terms of a limited set of parameters necessarily requires the
identification of the dominating coupling terms, providing
insight into the most significant underlying physical mecha-
nisms. Second, the availability of such models gives access
to the vibrational spectra without requiring the calculation of
the coupling factors, thereby facilitating further refinements
of structural models. We note that parts of the results pertain-
ing to model I were used in a previous publication for a
comparison between vitreous SiO2 and vitreous GeO2.22

This paper is organized as follows. Section II gives a brief
description of the applied methodological scheme. The mod-
els of v-SiO2 used in this work are introduced in Sec. III.
This section describes their origin, their short-range and
medium-range structural properties, and their electronic
structure. In Sec. IV, we obtain the vibrational frequencies
and eigenmodes of our models, which are at the basis of all
the subsequent calculations in this work. In particular, we
compare in this section the vibrational densities of states
�v-DOSs� of the three models. Section V is devoted to the
calculation of structure factors as obtained by neutron and
x-ray diffractions. We focus on the total neutron structure
factor, the total x-ray structure, and the individual partial
structure factors. For all these quantities, we carry out com-
parisons with their experimental counterparts. This section
also addresses the pair-correlation functions. In Sec. VI, we
start our study of the vibrational spectra by considering the
inelastic neutron spectra of our models. The calculated spec-
tra are compared to experimental ones. Infrared spectra are
obtained and discussed in Sec. VII. Our study includes the
static and high-frequency dielectric constants, the Born
charge tensors, the real and imaginary parts of the dielectric
function, the energy-loss spectrum, and the LO-TO split-
tings. This section also introduces a simple parametric model
for the description of the infrared coupling. Section VIII ad-
dresses the Raman spectra. We obtain Raman spectra for all
our models and discuss to what extent these spectra reflect
medium-range structural properties of the oxide network.
This section concludes with the derivation of optimal bond-

polarizability parameters to describe the Raman coupling in
v-SiO2. The conclusions of our work are drawn in Sec. IX.

II. METHODS

The electronic and structural relaxations were carried out
within a first-principles scheme23,24 based on density-
functional theory. The exchange and correlation energy was
accounted for through the local-density approximation
�LDA� to density-functional theory. Plane-wave basis sets
with energy cutoffs of 25 and 200 Ry were used to expand
the electron wave functions and the electron density, respec-
tively. Core valence interactions were accounted for by a
norm-conserving pseudopotential for Si �Ref. 25� and an ul-
trasoft one for O.26 The wave functions were expanded at the
sole � point of the Brillouin zone, as justified by the large
size and the large band gap of our systems. We used com-
puter codes as provided in the QUANTUM-ESPRESSO

package.27

For obtaining the vibrational frequencies and eigenmodes,
we calculated the analytical part of the dynamical matrix by
taking finite differences of the atomic forces upon sequential
displacement of all atoms.14,28 In these calculations, we used
atomic displacements of �0.1 bohr, which correspond to a
regime in which the atomic forces show a linear dependence
on the displacement. Alternatively, the dynamical matrix
could be obtained in a fully equivalent way through a pertur-
bational approach.29,30

The calculation of the infrared and Raman spectra re-
quires the evaluation of the first and second derivatives of
the atomic forces with respect to the electric field.16 In the
present work, these calculations were carried out through a
scheme which allows one to consider finite electric fields in
periodic density-functional calculations.13 The relevant de-
rivatives could then be obtained numerically by finite differ-
ences. The values of the applied electric fields are con-
strained to the interval of fields for which the calculation
converges,13 but should be chosen sufficiently large to
achieve good numerical accuracy. For the infrared spectra,
the Born charge tensors result from the first derivatives of the
atomic forces with respect to the electric field. For the Ra-
man spectra, the second derivatives are needed and are cal-
culated as outlined in Appendix A.

In the limit of large simulation cells, it has been demon-
strated that this approach is fully equivalent to the treatment
of electric fields within perturbational schemes.13 A discus-
sion concerning the convergence with increasing simulation
cell can be found in Ref. 31. To provide an estimate of re-
sidual errors, we compared in Sec. VIII C optimal bond-
polarizability parameters as derived through the application
of finite electric fields to those obtained within a perturba-
tional approach.

III. MODELS OF VITREOUS SILICA

A. Origin of models

The use of multiple models constitutes a way to achieve a
good level of statistical representation of the structural fea-
tures of v-SiO2.32 Thus, for discussing the structural and vi-
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brational properties of v-SiO2, we considered a set of three
models. All models considered in this work correspond to a
network of corner-sharing tetrahedra without any coordina-
tion defect. The simulation cells are cubic and the structures
were subject to periodic boundary conditions. The cell pa-
rameters were kept fixed in order to reproduce the experi-
mental density of 2.2 g /cm3.

Model I was generated for the purpose of this work
through the combined use of classical and first-principles
molecular dynamics.16,33 In case of vitreous silica and vitre-
ous germania, the use of such a combined scheme allows one
to obtain models with structural and vibrational properties of
comparable quality to those generated within fully first-
principles schemes.18,34 As a starting point for the generation
of model I, we selected a model structure of v-SiO2 among
those previously generated in Ref. 33 by classical molecular
dynamics.35,36 Good agreement with the experimental Si-
O-Si bond-angle distribution and a low content of three-
membered rings �cf. Sec. III C� were used as selection crite-
ria. The selected model structure then underwent structural
optimization through damped first-principles molecular
dynamics.23,24 Model I consists of 144 atoms. For compari-
son, the set of models considered in this work also includes
two smaller structures of only 72 atoms, generated in previ-
ous studies. Model II was generated in the same way as
model I,11 whereas model III was obtained within a fully
first-principles scheme.37

B. Short-range structure

In the following, we primarily focus on model I and use
the other two models for comparison. In Fig. 1�a�, we show
the bond-length distributions of our models. All three models
show very similar average bond lengths ��1.6 Å� in good
agreement with experimental estimates.6 The bond-length
distribution of model I most closely resembles a Gaussian
distribution, as a consequence of the larger size of this model
and therefore of the larger statistical sampling of bonds. The
spread of bond lengths is smallest for model III, suggesting
that a fully ab initio generation procedure37 improves the
quality of the structural relaxation. In Fig. 1�b�, we show the
O-Si-O bond-angle distribution for our models. In all the
models, the average O-Si-O bond angle is very close to the
experimental value corresponding to the ideal tetrahedral ge-
ometry �109.47°�.6 For model II the width of this distribution

is slightly larger than for the other two models, witnessing
some residual strain in the tetrahedra. In Fig. 1�c�, we show
the Si-O-Si bond-angle distributions of models I–III. The
average values of the Si-O-Si bond-angle distributions are
reported in Table I. The Si-O-Si bond-angle distribution is a
key quantity for the description of a network of corner-
sharing tetrahedra. Indeed, it relates to the way the tetrahedra
are arranged, thereby defining the medium-range order of the
network. Model II shows the largest average angle �153°�
and is characterized by a distribution of rather large angles,
ranging between 130° and 180°. On the other hand, model
III shows a predominance of small angles, with an average
angle of only 137°. Model I shows an intermediate distribu-
tion ranging between 120° and 180° with an average angle of
148°. The average angles of both model I and model II are
consistent with experimental measurements which indicate a
value close to 150°.5–9

C. Medium-range structure: Ring statistics

Vitreous SiO2 can be thought as a random network in
which the basic topological units are the SiO4 tetrahedra.3 To
characterize the connectivity of the network, a medium-
range-order property, it is convenient to have recourse to the
ring statistics.10,38 We here adopted the shortest path analysis
proposed in Ref. 10, which allows direct comparison with
previous ring-statistics studies of SiO2.12,36,39,40 The ring sta-
tistics of our three models of v-SiO2 are shown in Fig. 2. For
all the models, five-membered and six-membered rings are
the most frequent. The fact that the network of vitreous silica
contains a large number of six-membered rings can be un-
derstood by considering the phase diagram of silica.36 When
the system is cooled from the liquid phase at zero pressure,
the crystalline phase that is obtained is �-cristobalite,41

which has only rings of size 6. Therefore, it can be expected
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dSiO(Å)
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FIG. 1. Distributions of �a� Si-O bond lengths, �b� O-Si-O bond
angles, and �c� Si-O-Si bond angles for models I �solid curve�, II
�dotted curve�, and III �dashed curve� of v-SiO2. Gaussian broad-
enings of 0.005 Å and 2.5° were used.

TABLE I. Structural properties of models I–III of v-SiO2: num-
ber of atoms �N�, average bond length �dSiO�, average O-Si-O angle,
and average Si-O-Si angle. The respective standard deviations are
given in parentheses. Experimental estimates for the angles and the
bond lengths are taken from Ref. 6.

N dSiO �Å� �O-Si-O �Si-O-Si

Model I 144 1.600 �0.015� 109.4° �4.3°� 148.2° �13.4°�
Model II 72 1.614 �0.020� 109.5° �6.4°� 152.6° �10.9°�
Model III 72 1.594 �0.014� 109.5° �5.3°� 136.9° �14.2°�
Expt. 1.605 109.47° 148.3°
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FIG. 2. Ring statistics of models I–III of v-SiO2. The size speci-
fies the number of Si-O segments.
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that the local structure of the amorphous network resembles
that of �-cristobalite with six-membered rings among the
most frequent ones. In all our models, rings of size 8 or
larger are rare. Comparing the models, we register significant
differences for the concentration of three-membered and
four-membered rings. Model I shows a single three-
membered ring and ten four-membered rings. The sum of
bond angles inside the three-membered ring amounts to
698°, slightly less than the ideal value of 720°. This indicates
that the ring is quasiplanar.12 In model II, three-membered
rings are absent and only a single four-membered ring oc-
curs. Model III shows five three-membered rings and two
four-membered rings.12

In Table II, we give the concentration of O atoms belong-
ing to three-membered and four-membered rings in our mod-
els of v-SiO2. The values are compared with estimates de-
rived from the experimental Raman spectrum.11 In general,
all models show significant deviations with respect to the
experimental estimates. These deviations reflect, on the one
hand, the difficulty of generating models with the targeted
ring concentrations and, on the other hand, the inadequate
size of the considered models. A model containing �1000
atoms would be necessary to approach the theoretical esti-
mate of O in three-membered rings, but this would be com-
putationally prohibitive for first-principles calculations. Hav-
ing these limitations in mind, we considered structural
models with substantially different ring statistics in order to
understand the effects of this property on the vibrational
spectra. More specifically, model III shows concentrations of
three-membered and four-membered rings exceeding the ex-
perimental estimates by 1–2 orders of magnitude. In particu-
lar, the occurrence of a large number of three-membered
rings is expected to affect the medium-range properties in a
severe way because of the small angles and the planarity of
such structural units. Model II shows the lowest concentra-
tions of small rings and thus the best agreement with the
estimates derived from the experimental Raman spectrum.
However, three-membered rings are absent in this model.
Model I was selected with the intent of achieving concentra-
tions of small rings close to those of model II, but with the
occurrence of a single three-membered ring. Its concentra-
tion of three-membered rings is then determined by the size
of the model �144 atoms�. This choice further resulted in a
concentration of four-membered rings in excess by 2 orders
of magnitude. However, four-membered rings cause less
stringent structural constraints than three-membered rings
and are therefore expected to affect the vibrational properties
in a milder way.

D. Electronic structure

The electronic densities of states �DOSs� of the models
under consideration are given in Fig. 3. The origin of the
bands in terms of atomic orbitals is similar to the case of
�-quartz SiO2 �Ref. 42�: the lowest band arises from O 2s
states, the low-energy side of the central band results from
the bonds between Si sp3 and O 2p orbitals. The high-energy
side of this central band consists of O 2p nonbonding orbit-
als, which define the top of the valence band. The low-
energy part of the conduction band carries a predominant Si
weight and results from antibonding combinations between
Si sp3 and O 2p orbitals.42 For the purpose of comparison,
the energy scales in Fig. 3 were aligned through the deep
O 2s states, which are assumed to be least affected by the
structural disorder. The electronic densities of states of the
three models only show minor variations. In particular, we
calculated band gaps of 5.4, 5.1, and 5.6 eV for models I, II,
and III, respectively. The calculated band gaps severely un-
derestimate the experimental value ��9 eV �Ref. 43��, as
usual in density-functional schemes. The band-gap variations
mainly results from different locations of the conduction-
band minimum and should be attributed to the structural dis-
order. A similar behavior has also been observed for GeO2.44

The present electronic density of states is consistent with
previous density-functional calculations for �-quartz and
v-SiO2.37,42

IV. VIBRATIONAL FREQUENCIES AND EIGENMODES

In this section, we address the vibrational properties of
vitreous silica. The analytical part of the dynamical matrix is
expressed using a similar notation as in Ref. 30:

DIiJj =
1

�MIMJ

�2Etot

�RIi � RJj
= −

1
�MIMJ

�FJj

�RIi
, �1�

where Etot is the total energy of the system and MI is the
mass of the Ith atom. Uppercase and lowercase indices indi-
cate the atoms and the three Cartesian directions, respec-
tively. We obtained the dynamical matrix in Eq. �1� through
a finite-difference scheme.14,28

TABLE II. Concentrations of O atoms belonging to three-
membered �O3R� and four-membered �O4R� rings in our models of
v-SiO2 and estimates derived from the experimental Raman spec-
trum �Ref. 11�.

Model I Model II Model III Ref. 11

O3R 3% 0% 31% 0.22%

O4R 42% 8.3% 17% 0.36%
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FIG. 3. Electronic DOSs of our models of v-SiO2: model I
�solid curve�, model II �dotted curve�, and model III �dashed curve�.
The energy scales are aligned through the O 2s states. The energy
scale is referred to the top of the valence band of model I. The
DOSs of models II and III have been rescaled to match the normal-
ization of the DOS of model I. A Gaussian broadening of 0.25 eV
was used.
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The full dynamical matrix also includes a nonanalytical
matrix, DIiJj

q , accounting for vibrational excitations longitu-
dinal to the normalized direction q along which the vibra-
tional momentum is exchanged:45

DIiJj
q = DIiJj + DIiJj

q , �2�

with

DIiJj
q =

1
�MIMJ

4�

��V��
k

ZI,ki
� · qk	��

h

ZJ,hj
� · qh	 , �3�

where V indicates the volume of the periodic simulation cell.
In Eq. �3�, the high-frequency dielectric tensor of our system
is assumed to be isotropic.19,20,46,47 The tensors ZI,ik

� entering
in Eq. �3� are the Born effective charge tensors. These are
defined as the polarization Pi

el along the direction i induced
by a unitary displacement of the Ith atom in direction k �Ref.
48�:

ZI,ik
� = V

�Pi
el

�RIk
= −

�2Etot

�Ei � RIk
=

�FIk

�Ei
. �4�

The last equality gives an alternative definition of the Born
effective charge tensors in terms of a derivative of the atomic
force component FIk with respect to the electric field compo-
nent Ei. The derivative with respect to the electric field
should be evaluated at vanishing electric field. In this work,
we obtained the tensors ZI,ik

� by calculating these derivatives
numerically by finite differences. An extended analysis of the
Born charges is given in Sec. VII.

For a given choice of q, the frequencies 	n and the cor-
responding normalized eigenmodes �I

n are obtained by diago-
nalizing the dynamical matrix. The associated atomic dis-
placements are given by

uI
n =

1
�MI

�I
n. �5�

The index n labels the vibrational modes and runs from 1 to
3N, where N is the total number of atoms in the model.

The v-DOS underlies all the vibrational spectra. The
v-DOS Z�	� is expressed in terms of the vibrational frequen-
cies 	n as

Z�	� =
1

3N
�

n


�	 − 	n� . �6�

In Fig. 4�a�, the vibrational density of states of model I is
compared to those of models II and III.14,16,28 The principal
features are reproduced similarly in the three models, with
the main peaks located approximately at the same energies.
However, the position of the peak at �100 meV differs no-
ticeably among the models. This peak results from bending
vibrations28 and its position appears to be sensitive to the
Si-O-Si bond-angle distribution, occurring at higher energy
as the average Si-O-Si angle in the model decreases �cf.
Table I�.51,52 For a detailed analysis of the vibrational density
of states in terms of the underlying vibrations, we refer to
Refs. 14 and 28.

V. NEUTRON AND X-RAY STRUCTURE FACTORS

A. Pair-correlation functions

It is preferable to carry out the comparison between
theory and experiment through the structure factors, as these
quantities correspond to the direct measurements and do not
undergo further manipulation. However, since real-space cor-
relations carry a more intuitive character, we first illustrate
the structural properties through the partial pair-correlation
functions g���r�. In a binary system, the function g���r�
gives the ratio between the density of atoms of species � at a
distance r from an atom of species � and the average density
�� of atoms of species � �Ref. 53�:

g���r� =
1

N���
�

I��,J��


�r − 
RJ − RI
� , �7�

where N� corresponds to the number of atoms of species �.
We accounted for finite-temperature effects in the pair-

correlation functions by broadening the interatomic separa-
tions of the equilibrium structure through the use of Gaussian
functions, their widths being determined by the vibrational
eigenmodes and frequencies obtained in the harmonic
approximation.19,54 Specifically, we replaced the 
 functions
in Eq. �7� with Gaussian functions with a variance �IJ

2 given
by54

�IJ
2 = ��d · �uI − uJ��2� , �8�

where uI is the displacement of the Ith atom with respect to
the equilibrium position RI, and d is a unit vector along the
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FIG. 4. �a� Calculated vibrational density of states of model I
�solid curve� of v-SiO2 compared to those of model II �dotted
curve� and model III �dashed curve�, taken from Refs. 14 and 16.
�b� Calculated effective neutron density of states for model I �solid
curve�, compared to the experimental result from Ref. 49 �closed
symbols� and to the actual vibrational density of states �dotted
curve�. Experimental data from Ref. 50 are also shown �open sym-
bols�. In the calculation, we used a temperature of 33 K and the Q
range between 6 and 13 Å−1, as in the experiment of Ref. 49. A
Gaussian broadening of 2.5 meV was used in the calculation.
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direction of RJ−RI. The brackets �¯� indicate a thermal
average obtained as follows:54

�uIiuJj� = �
n




	n

�Ii
n

�MI

�Jj
n

�MJ

nB�
	n� +

1

2
� , �9�

where the indices i and j label the Cartesian directions, MI
corresponds to the mass of the Ith atom, and the temperature
dependence enters through the boson occupation number

nB�E� =
1

eE/kBT − 1
, �10�

where kB is the Boltzmann factor. This approach has been
shown to be well suited for describing oxide glasses at room
temperature.54 It does not require extended molecular-
dynamics runs and captures the zero-point motion effects.54

In Fig. 5, we give the pair-correlation functions of model
I, gSiO�r�, gSiSi�r�, and gOO�r�, evaluated at room tempera-
ture. The first peak of gSiO�r� is located at 1.59 Å and agrees
closely with the Si-O bond length �Table I�. From a spherical
integration of the first peak in gSiO�r�, we derive an average
coordination number of 4, consistent with the absence of any
coordination defect in our model. Similarly, spherical inte-
gration of the first peaks in gSiSi�r� and gOO�r� up to their
respective minima yield values of 4.0 and 6.3, respectively.
These average coordination numbers clearly indicate the oc-
currence of a network of corner-sharing tetrahedra, in which
each Si atom is surrounded by the four Si atoms of the
nearest-neighbor tetrahedra. The first peaks of gSiSi�r� and
gOO�r� correspond to Si-Si and O-O distances of 3.08 and
2.59 Å, respectively.

The most significant differences between the three models
considered in this work appear in the Si-Si pair-correlation
functions. Figure 6�a� shows that the location of the first
peak of this pair-correlation function varies according to the
Si-O-Si bond-angle distribution �Fig. 1�c��. In particular, this
peak is situated at 3.08, 3.15, and 2.92 Å for models I, II,
and III, respectively. The peak position for model I �3.08 Å�
is in particularly good agreement with a recent diffraction
measurement which situates this peak at 3.08�0.01 Å.7

This agreement lends support to the value of 148.2° found in
model I for the average Si-O-Si angle �Table I�.

B. Neutron and x-ray structure factors

We express the total structure factor as a function of the
exchanged momentum Q �Ref. 53�,

S�Q� = �
�,�

�c�c��1/2 f��Q�f��Q�
�f2�Q��

S���Q� , �11�

�f2�Q�� = �
�

c�f�
2�Q� , �12�

where c�=N� /N, f� are atomic scattering factors, and
S���Q� are the partial structure factors in the Ashcroft-
Langreth formulation:
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model I of v-SiO2, calculated in the harmonic approximation at
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FIG. 6. �Color online� Comparison between �a� the Si-Si pair-
correlation functions �gSiSi�r�� and �b� the Si-Si partial structure
factors �SSiSi�Q�� of model I �solid curve�, model II �dotted curve�,
and model III �dashed curve�. Calculated results are obtained in the
harmonic approximation at room temperature. We used a Gaussian
broadening of 0.15 Å−1 in �b�. The partial structure factors are
compared with the experimental data of Ref. 7 �disks with error
bars�.
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S���Q� =
1

�N�N�
�� �

J��,K��

e−iQ·�RJ−RK�� − 
Q,0� ,

�13�

where the brackets �¯� indicate a thermal average. For iso-
tropic materials, the structure factors only depend on the
modulus of Q, and are obtained by a spherical average.55

Only Q vectors compatible with the periodicity of the simu-
lation cell are retained. Therefore, the result corresponds to
the infinitely repeated model.56

Adopting the harmonic approximation, the thermal aver-
age can be calculated by means of Eq. �9�. The partial struc-
ture factors then simplify to

S���Q� =
1

�N�N�
� �

J��,K��

e−WJK�Q�eiQ·�RJ−RK� − 
Q,0� ,

�14�

where the exponents in the Debye-Waller factors are given
by

WJK�Q� =
1

2
��Q · �uJ − uK��2� . �15�

In neutron diffraction, the interactions between the incom-
ing neutrons and the nuclei are described by the neutron-
scattering lengths b�: f��Q�=b�. In our calculations, we took
the neutron-scattering lengths bSi=4.149 fm and bO
=5.805 fm.57 We show in Fig. 7�a� the comparison between
the neutron structure factors of model I and the experimental
data taken from Ref. 58. Overall good agreement is regis-
tered with the experiment. The other two models show com-
parisons with experiment of similar quality.16,37

The x-ray structure factor is also given by Eq. �11�,53

where the f��Q� now stand for the atomic x-ray scattering
factors.60 Figure 7�b� shows the comparison between the

x-ray structure factors of model I and the experimental data
taken from Ref. 59. The agreement with experimental data is
of similar quality to that registered for the neutron structure
factor �Fig. 7�a��. In the range of Q�5 Å−1, the x-ray struc-
ture factor differs markedly with respect to the neutron struc-
ture factor. In particular, in the x-ray structure factor the first
sharp diffraction peak shows an increased intensity, and no
feature is registered corresponding to the second peak in the
neutron structure factor ��2.7 Å−1�. These differences result
from the different atomic scattering factors in neutron and
x-ray diffractions.

C. Partial structure factors

Very recently, the partial structure factors of vitreous
silica have been measured.7 We here carry out a detailed
comparison between theory and experiment for these struc-
ture factors. The Faber-Ziman formulation of the partial
structure factors is related to the common Ashcroft-Langreth
form, S���Q�, through the following relations:53

S��
FZ�Q� = �S���Q� − c��/c�, �16�

S��
FZ�Q� = S���Q�/�c�c��1/2 + 1, �17�

where � and � indicate Si and O species, respectively. In
Fig. 8, we show the Faber-Ziman partial structure factors
calculated for model I at room temperature, compared to the
experimental data of Ref. 7. We register very good overall
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structure factor at room temperature �solid curve� for model I of
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culated for model I of v-SiO2 at room temperature �solid curve�,
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agreement, particularly above 3 Å−1. The positions of the
features occurring at �2.7 Å−1 are generally also well de-
scribed, but the theoretical features are slightly more pro-
nounced than their experimental counterparts for each of the
three partial structure factors. In the region of the first sharp
diffraction peak, we observe the largest differences between
theory and experiment. However, it should be mentioned that
in this region the Q vectors available for the theoretical
structure factors are more sparse because of the finite size of
the model, which results in significant fluctuations between
nearby values of Q.

To address the differences between the three model struc-
tures studied in this work, we focus on the Si-Si partial struc-
ture factor, which is the most informative about the Si-O-Si
bond-angle distribution. In Fig. 6�b�, the comparison in-
volves the three models and experiment.7 As for the Si-Si
pair-correlation function �cf. Fig. 6�a��, the three models
show noticeable differences. The best agreement between
theory and experiment is achieved for model I. The descrip-
tion offered by model II is only marginally worse with the
most significant differences confined in the region below
5 Å−1. The disagreement with experiment is most apparent
for model III, which shows a Si-Si structure factor with out-
of-phase oscillations persisting up to high values of Q. The
good agreement achieved for model I brings further support
to its Si-O-Si bond-angle distribution.

In recent years, the partial structure factors of disordered
network-forming systems have often been discussed7,61,62 in
the formulation proposed by Bhatia and Thornton.63 The par-
tial structure factors in this formulation are obtained from
S���Q� by the following linear transformation:53

SNN�Q� = c�S���Q� + c�S���Q� + 2�c�c� S���Q� , �18�

SCC�Q� = c�c��c�S���Q� + c�S���Q� − 2�c�c� S���Q�� ,

�19�

SNC�Q� = c�c�
S���Q� − S���Q� +
c� − c�

�c�c�

S���Q�� .

�20�

In Fig. 9, we show the Bhatia-Thornton partial structure fac-
tors calculated for model I, compared with the experimental
data from Ref. 7. Overall, we record similar agreement as for
the Faber-Ziman partial structure in Fig. 8, with small differ-
ences between theory and experiment confined to the region
below 3 Å−1. We note that the SNN�Q� is very similar to the
neutron total structure factor. This can be understood by
comparing Eqs. �11� and �18� and by taking into account the
fact that O and Si have similar scattering lengths. In the limit
Q→�, the number-number structure factor SNN�Q� tends to
unity �Eq. �18��. In the concentration-concentration structure
factor SCC�Q�, the dominant peak is located at �2.7 Å−1. We
do not register any clear trace of the first sharp diffraction
peak, in agreement with the experiment7 and previous
calculations.37 This behavior of vitreous silica has recently
been assigned to the absence of coordination defects.62 For
large values of Q, the SCC�Q� and SNC�Q� tend to c�c�

=2 /9 and 0, respectively �Eqs. �19� and �20��.

VI. INELASTIC-NEUTRON-SCATTERING SPECTRUM

The vibrational density of states is not directly accessible
in experiments. The experimental technique that most closely
reproduces the vibrational density of states is inelastic neu-
tron scattering. Since Si and O have negligible incoherent-
scattering cross sections, the one-phonon neutron-scattering
function is given by57,64

S�Q,E� =
1

N�b2��
II�

bIbI�e
−�WI+WI��eiQ·�RI�−RI�

� �
n



�Q · �I

n��Q · �I�
n �

2�MIMI��
1/2	n

�nB�
	n� + 1�
�E − 
	n� ,

�21�

where the WI are the exponents of the Debye-Waller factors,
which for an isotropic amorphous system are given by

WI�Q� = Q2�uI
2�/6. �22�

Through the neutron-scattering function, a generalized den-
sity of states can be defined as

G�Q,E� = e2W̄ 2m̄E


2Q2

1

nB�E� + 1
S�Q,E� , �23�

where m̄−1=�IMI
−1 /N and W̄=Q2�u2� /6. By averaging the

generalized density of states G�Q ,E� over Q, we obtain an
effective neutron density of states G�E�:

0

0.5

1

1.5

2

S
N

N

(a)

-0.25

0

0.25

0.5

0.75

1

S
C

C

(b)

0 5 10 15

-0.5

-0.25

0

0.25

Q (Å–1)

S
N

C

(c)

FIG. 9. �Color online� Bhatia-Thornton partial structure factors
calculated for model I of v-SiO2 at room temperature �solid curve�,
compared to experimental results from Ref. 7 �disks�: �a� SNN�Q�,
�b� SCC�Q�, and �c� SNC�Q�.
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G�E� =

�
Q1

Q2

G�Q,E�dQ

Q2 − Q1
, �24�

where Q1 and Q2 correspond to the limits of the experimen-
tally investigated Q range.

In Fig. 4�b�, the calculated effective neutron density of
states of model I is compared to two sets of experimental
data49,50 and to the actual vibrational density of states. The
agreement with experiment is overall very good. In particu-
lar, we note that our theoretical results reproduce well the
density of states at low energy measured in Ref. 50. For the
peak at �100 meV, we record an excellent accord between
theory and experiment,49,50 lending support to the average
Si-O-Si bond angle of model I �148°�. The comparison be-
tween the effective neutron density of states and the actual
one shows that for v-SiO2 the relative intensities only un-
dergo minor variations, in accord with previous studies.28

VII. INFRARED SPECTRA

A. Born charge tensors

The coupling between the atomic displacements and the
electric field is described by the Born effective charge ten-
sors Z�.65 As described in Sec. IV, we calculated the charge
tensors Z� for all Si and O atoms in our models using a
finite-difference scheme.

For analyzing the Born charge tensors, we adopted a de-
composition in terms of the representations of the spatial
rotations.15 The decomposition consists of three terms la-
beled �=0,1 ,2. The �=0 term corresponds to the isotropic
part,

Z�=0
� = Ziso

� 
ij , �25�

where Ziso
� =Tr�Z�� /3. The terms �=1 and �=2 constitute the

anisotropic part and are expressed as

Z�=1
� =

1

2
�Z� − Z�T� , �26�

Z�=2
� =

1

2
�Z� + Z�T� − Z�=0

� , �27�

where Z�T is the transpose of the Z� tensor. Three parameters
are required to describe the antisymmetric term �=1, while
the traceless symmetric term �=2 is determined by five pa-
rameters. To quantify the respective weights of each compo-
nent, we adopted the standard matricial norm.15

This analysis was carried out for the three models and the
respective results are given in Table III. For Si atoms, the
isotropic component ��=0� accounts for about 97% of the
Born charge tensor, as a consequence of the local tetrahedral
symmetry. Also for O atoms, the isotropic component is
dominant, but the �=2 components give rise to a sizable
contribution of �20%. The contribution of the antisymmet-
ric components �=1 is always found to be negligible.

The average isotropic charges in the three models show
differences of at most 0.2 �Table III�, which should be as-
signed to their different bond-angle and bond-length distri-
butions. For the Si atoms of model I, we calculated an aver-
age isotropic charge of 3.3 with a standard deviation of 0.1.
The average isotropic Born charge of the O atoms is −1.65
with a standard deviation of 0.05. For giving a more detailed
description of the Born charge tensors of the O atoms, we
adopted a local reference set based on the orientation of the
Si-O-Si bond. We took the x direction along the bisector of
Si-O-Si angle, the y direction normal to the plane of the
Si-O-Si bridge, and the z direction orthogonal to the previous
two. In this reference system, our calculation for model I
gave the following average Z� for O atoms:

Z��O� = �− 1.10 − 0.01 0.00

− 0.01 − 1.04 0.00

0.00 0.00 − 2.80
� . �28�

This average tensor is almost diagonal, with diagonal values
typical for O bridge structures.15,66 In particular, for the dis-
placements along the stretching direction �z direction� the
coupling is noticeably stronger than for the other directions.

B. Dielectric constant and dielectric function

The high-frequency dielectric tensor �� is related to the
dielectric susceptibility � through the usual relations of clas-
sical electrostatics:

TABLE III. Average ��Ziso
� �� and standard deviations ��Ziso

� � of the distribution of isotropic Born charges
for the Si and O atoms in our models of v-SiO2. The average percentual weights of isotropic ��=0� and
anisotropic ��=1 and �=2� components are also given. The results of model III are taken from Ref. 15.

Model I Model II Model III

Si O Si O Si O

�Ziso
� � 3.298 −1.649 3.392 −1.696 3.177 −1.588

�Ziso
� 0.106 0.062 0.079 0.046 0.121 0.078

�=0 97.94 80.03 97.77 78.42 96.94 82.27

�=1 0.33 0.13 0.24 0.11 0.46 0.16

�=2 1.73 19.84 1.99 21.48 2.60 17.56
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����ij = 
ij + 4��ij , �29�

�ij = −
1

V

�2Etot

�Ei � E j
=

�Pi
el

�E j
, �30�

where the derivatives with respect to the electric field should
be evaluated at vanishing electric field. In this work, we cal-
culated the derivative of the induced polarization with re-
spect to electric field by finite differences, relying on the
possibility of applying a finite electric field.13,16 For all our
models of v-SiO2, the calculated high-frequency dielectric
tensors are almost isotropic, as expected for an amorphous
system.19,20,46,47 We give in Table IV the isotropic average of
these tensors: ��=Tr���� /3. All models give values which lie
close to the experimental value. In particular, for model I, we
obtained an average dielectric constant of 2.1, in agreement
with the experimental value �2.1 �Ref. 67��. The level of
agreement is better than could be expected and likely results
from the compensation of errors. Indeed, accurate calcula-
tions of the dielectric constant of �-quartz in the local-
density approximation overestimate the experimental value
by about 7%,66 while the use of finite electric fields with
finite cell sizes yields errors that underestimate the con-
verged value.31

In the following, we describe the coupling to individual
vibrational modes. It is therefore convenient to introduce the
oscillator strengths Fn:

F j
n = �

Ik

ZI,jk
� �Ik

n

�MI

. �31�

We evaluated the static dielectric constant using the calcu-
lated vibrational frequencies and oscillator strengths:15

�0 = �� +
4�

3V
�

n


Fn
2

	n
2 , �32�

where V is the volume of the periodic simulation cell. For
model I, we obtained �0=3.8, in excellent agreement with the
experimental value �0

expt=3.8.68 The values for the other
models do not differ significantly and are summarized in
Table IV.

The real and imaginary parts of the dielectric response
function, �1�	� and �2�	�, are given by15,69

�1�	� = �� −
4�

3V
�

n


Fn
2

	2 − 	n
2 , �33�

�2�	� =
4�2

3V
�

n


Fn
2

2	n

�	 − 	n� . �34�

The dielectric function described above gives access to all
the dielectric properties. In particular, these include the
energy-loss function which is obtained as −Im�1 /��	��.
However, it was found convenient to access the latter func-
tion by a direct calculation:16,69

− Im
 1

��	�� =
4�2

V����2�
n

�q · Fn�2

2	n

�	 − 	n� . �35�

For isotropic systems, the energy-loss function in Eq. �35�
can be averaged over all directions of q. Here, we used the
three Cartesian directions for this average.

In Figs. 10�a� and 10�b�, we show the real and imaginary
parts of the dielectric function calculated for model I to-
gether with the experimental result.67 The agreement with
experiment is of the same quality as for models II and
III.15,16 The calculation gives three principal resonances
which occur in close correspondence of the experimental fea-
tures. The real part shows typical S-shaped resonances in
correspondence of the TO peaks in the imaginary part. Fig-
ure 10�c� shows the energy-loss function, which defines the
positions of the LO peaks. Apart from the highest-frequency
LO peak at �1250 cm−1, the agreement with experiment is
overall similar to that achieved for the dielectric function.
We note that the comparison with experiment does not in-

TABLE IV. High-frequency ���� and static dielectric constants
��0� for models I–III of v-SiO2. For models II and III, the reported
values are taken from Refs. 13 and 16. Experimental values are
taken from Refs. 67 and 68.

�� �0

Model I 2.1 3.8

Model II 2.0 3.8

Model III 2.0 3.6

Expt. 2.1 3.8
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FIG. 10. �a� Real ��1� and �b� imaginary ��2� parts of the dielec-
tric function, and �c� energy-loss function for model I of v-SiO2

�solid curve� compared to experimental data of Ref. 67 �dotted
curve�. Lorentzian and Gaussian broadenings of 19 cm−1 were used
for the real and imaginary parts, respectively.
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clude the widths of the resonances, which are not modeled in
our simulation approach.

In Fig. 11, we show the comparison between the dielectric
and energy-loss functions of models I–III. The three models
give spectra of overall similar shape. This similarity stems
from the common short-range order which dominates the
infrared spectra.11,19 However, in the central band ranging
between 300 and 700 cm−1, and also in the high-frequency
band ranging between 1000 and 1200 cm−1, we observe mi-
nor differences between the calculated spectra. Since these
bands arise from O bending and O stretching modes, respec-
tively, these differences reflect differences in the Si-O-Si
bond-angle and Si-O bond-length distributions. The function
�2 of model I appears to give better global agreement with
experiment than those of models II and III, particularly in the
central part of the spectrum. Indeed, the spectra of the latter
two models feature spurious peaks in the range of
700–900 cm−1 that are absent in the experimental spectrum
�Fig. 10�. However, the high-frequency peak at �1100 is
wider in models I and II than in model III. This feature
should be attributed to the better relaxation of the atomic
configuration in model III. Similar comments apply for the
comparison between the calculated energy-loss spectra in
Fig. 11�c�.

In Table V, the frequencies of the main TO and LO fea-
tures are summarized. The frequencies associated to the first
and third resonances are overall well described with errors of
at most �30 cm−1. The second resonance is very well de-

scribed in model I, but models II and III overestimate the
experimental frequency by �50 cm−1. This result further fa-
vors the Si-O-Si bond-angle distribution of model I. As far as
the LO-TO splittings are concerned, all models give a good
qualitative description, showing the largest splitting for the
third resonance and the smallest splitting for the second one.

C. Parametric model for infrared coupling

To assess the role of the local structural environment, we
investigated correlations between the components of the
Born charge tensors of the O atoms and the Si-O-Si bond
angle. Figure 12�a� illustrates the correlation between the
isotropic O Born charge and the corresponding Si-O-Si
angle. The isotropic Born charge is found to decrease with
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FIG. 11. �a� Real and �b� imaginary parts of the dielectric func-
tion and �c� energy-loss function for our models of v-SiO2: model I
�solid curve�, model II �dotted curve�, and model III �dashed curve�.
The results for model II were taken from Ref. 16. The imaginary
part of model III was taken from Ref. 15. Lorentzian and Gaussian
broadenings of 19 cm−1 were used.

TABLE V. Frequencies �given in cm−1� of the three main peaks
of the imaginary part of the dielectric function �TO� and of the
energy-loss function �LO�. � indicates the splitting between corre-
sponding LO and TO peaks. Experimental data are taken from Ref.
70.

Model I Model II Model III Expt.

TO1 446 442 453 457

LO1 500 522 501 507

�1 54 80 48 50

TO2 808 862 861 810

LO2 816 872 873 820

�2 8 10 12 10

TO3 1084 1088 1106 1076

LO3 1288 1282 1253 1256

�3 204 194 147 180
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FIG. 12. Components of the oxygen Born charge tensors vs
Si-O-Si angle for model I of v-SiO2: �a� isotropic component �Ziso

� �
��=0 term�, �b� �, and �c� � components of the �=2 term �see text�.
The solid lines correspond to linear regressions.
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increasing bond angle.15 The trend is the same for all the
three models with similar spreadings of data �not shown�.
Hence, the correlation in Fig. 12�a� holds irrespective of the
Si-O-Si bond-angle distribution or ring statistics of the
model. Other relevant components of the O Born charge ten-
sors correspond to the diagonal of the traceless Z�=2

� tensor
defined in the local reference system described above. For
each O atom, we defined the diagonal components � and �
according to

Z�=2
� = �� 0 0

0 � 0

0 0 − � − �
� . �36�

Figures 12�b� and 12�c� show that � and � also show a linear
dependence on the Si-O-Si bond angle. These correlations
offer the possibility of defining a simple parametrization of
oxygen Born charge tensors in terms of only three functions
which linearly depend on the Si-O-Si bond angle �. For �
expressed in degrees, linear regressions of the data in Fig. 12
give

Ziso
� �O� = − 1.65 − 0.0039�� − 148.2°� , �37�

� = 0.55 + 0.0066�� − 148.2°� , �38�

� = 0.61 + 0.0048�� − 148.2°� . �39�

It was pointed out in Ref. 15 that the isotropic Born
charges satisfy a local dynamical charge neutrality rule. We
found that this rule also holds for all the models of the
present study �not shown�, thereby supporting its generality.
This rule establishes a relationship between the isotropic
Born charges of the Si and O atoms belonging to the same
tetrahedral unit:

Ziso
� �Si� � −

1

2 �
nn O

Ziso
� �O� , �40�

where the sum is restricted to the four nearest-neighbor O
atoms of the Si atom. The occurrence of such a dynamical
charge neutrality condition has been exploited to shed light
onto the dielectric and infrared response of disordered oxide
systems at low frequencies.71,72

In Fig. 13, we illustrate the effect of the Born charge
tensors on the imaginary part of the dielectric function. Fo-
cusing on model I, we compare the result corresponding to
using the full charge tensors with two parametric models for
the Born charge tensors. The parametric models are designed
to allow the modeling of infrared spectra without the neces-
sity of obtaining the Born charge tensors through explicit
calculations. The first parametric model is extremely simpli-
fied and consists of using isotropic Born charges for both Si
and O atoms, fixed at their respective average values found
for model I: �Ziso

� �Si��=3.30 and �Ziso
� �O��=−1.65 �Table III�.

Figure 13 shows that such a parametric model does not prop-
erly describe the relative intensity between the first and the
third resonances.15 To improve upon this description, we
considered a parametric model that also accounts for the �
=2 contribution to the Born charge tensors of the O atoms.
For the O charge tensors, this parametric model accounts for

the linear dependence of the tensor components Ziso
� , �, and

� on the Si-O-Si angle through the relations given in Eqs.
�37�–�39�. For the Si charge tensors, we used isotropic ten-
sors. For each atom, the value of the isotropic Born charge
was determined on the basis of the isotropic charges of the
neighboring O atoms through the local charge neutrality con-
dition given in Eq. �40�. The comparison in Fig. 13 shows
that this parametric model yields a noticeable improvement
upon the description achieved with solely isotropic charges,
closely approaching the result obtained with Born charges
calculated from first principles.

VIII. RAMAN SPECTRA

A. Raman cross section

In a first-order Stokes process of Raman scattering, an
incoming photon of frequency �L and polarization êL is scat-
tered to an outgoing photon of frequency �S and polarization
êS, creating a vibrational excitation of frequency 	n=�L
−�S. In nonresonant conditions, i.e., when �L is smaller
than the band gap, the Placzek approximation73 applies and
the Raman cross section does not depend significantly on �L
�Ref. 74�:

d2�

d�dE
� �

n


êS · Rn · êL
2



2	n
�nB�
	n� + 1�
�E − 
	n� ,

�41�

where E is the exchanged energy, n�
	n� is the boson factor
of Eq. �10�, and the �S

4 factor has been omitted because it
varies negligibly in typical Raman scattering experiments on
SiO2. The second-rank tensors Rn are the Raman suscepti-
bilities associated to the normal mode n:

Rij
n = �V�

Ik

��ij

�RIk

�Ik
n

�MI

, �42�

where the derivatives of the dielectric polarizability tensor
�ij can be expressed as
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FIG. 13. Imaginary part of the dielectric function of model I of
v-SiO2 obtained using the full Born charge tensors �solid curve�,
compared to those obtained using solely the average values of the
isotropic charges Ziso

� of Si and O atoms �dot-dashed curve� and
using the parametric model described in the text �dotted curve�. A
Gaussian broadening of 19 cm−1 was used.
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��ij

�RIk
=

1

V

�2FIk

�Ei � E j
. �43�

In this equation the derivatives should be evaluated at van-
ishing electric field.

Raman spectra of disordered materials are usually re-
corded in configurations in which the polarizations of incom-
ing and outgoing photons are either parallel �HH� or perpen-
dicular �HV�.74 To omit the main thermal dependence, the
experimental Raman cross section is often given in a reduced
form:

� d2�

d�dE
�

red
� �

n


êS · Rn · êL
2
�E − 
	n� . �44�

B. Raman spectra and medium-range order

In the present work, we focused on nonresonant Raman
spectra. The derivatives in Eq. �43� were evaluated through
the application of finite electric fields,13 as detailed in Ap-
pendix A. We calculated HH and HV spectra by taking ap-
propriate orientational averages.74,75

In Figs. 14�a� and 14�b�, we report both the reduced and
nonreduced HH and HV Raman spectra of model I of v-SiO2
compared to experimental data taken from Refs. 52 and 76.
The experimental Raman spectra are well consolidated and
have been confirmed by a large body of experimental work.77

Overall, we register good agreement with experiment. The
small differences between experiment and theory appearing
in the reduced spectra below �400 cm−1 are amplified in the

nonreduced spectra because of the boson factor �Eq. �10��.
The calculated HV spectrum in Fig. 14�c� features a clear
peak in correspondence of the experimental boson peak at
�50 cm−1. In models II and III this feature is unresolved
and instead spurious features occur at �150 cm−1 �not
shown�. Thus, model I gives the best description of the low-
frequency region of the Raman spectra, presumably due its
larger size �cf. Table I�.

While the HV spectrum is reminiscent of the vibrational
density of states,75 the HH Raman spectrum is dominated by
the coupling factor associated to oxygen bending motions.11

Through this property, the HH Raman spectrum is particu-
larly sensitive to relative arrangement of tetrahedra in the
SiO2 network. In Fig. 15, the reduced HH Raman spectra of
our three models of v-SiO2 are compared. The three spectra
show significant differences, especially in the range of
300–700 cm−1, i.e., for the bending band. The calculated
Raman spectra reflect the differences in the corresponding
Si-O-Si distributions �Fig. 1� and ring statistics �Fig. 2�. We
remark that as the average Si-O-Si bond angle in the model
decreases, the Raman intensity in the range of
300–700 cm−1 shifts toward higher frequencies.

The role of small ring structures deserves particular atten-
tion. The experimental HH Raman spectrum of v-SiO2
shows two particularly sharp lines at 495 and 606 cm−1,
known as D1 and D2.76,78 A first-principles investigation un-
ambiguously assigned the origin of these lines to breathing
vibrations of oxygen atoms in four-membered and three-
membered rings, respectively.12 From the intensities of these
lines, an estimate of the concentration of three-membered
and four-membered rings in v-SiO2 could be derived.11 A
similar analysis applied to v-B2O3 succeeded in giving an
estimate of the fraction of B atoms in boroxol rings.20

The large peak occurring at �620 cm−1 in the Raman
spectrum of model III �Fig. 15� corresponds to vibrations in
three-membered rings, and its intensity reflects the high con-
centration of such rings in this model �cf. Fig. 2�.11 Model II
is devoid of three-membered rings and consequently its Ra-
man spectrum shows a low intensity in the range around
600 cm−1.16 Model I only contains a single three-membered
ring, and its intensity does not stand out in the calculated
spectrum since all modes are artificially broadened in the
same way in Fig. 15. Nevertheless, the projection on the
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FIG. 14. Reduced �a� HH and �b� HV Raman spectra calculated
for model I �solid curve�, compared with the experimental data of
Ref. 76 �dotted curve�. �c� Nonreduced HH and HV Raman spectra
of model I �solid curve� compared with the experimental data of
Ref. 52 �dotted curve�. The theoretical HH spectrum was scaled to
match the integrated intensity of the experimental spectrum. The
same scaling factor was then applied to the HV spectrum. A Gauss-
ian broadening of 19 cm−1 was used.
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FIG. 15. �Color online� Calculated reduced HH Raman spectra
of model I �solid curve�, model II �dotted curve�, and model III
�dashed curve�, compared with the experimental data of Ref. 76
�gray/red�. The result for model II is taken from Ref. 16. A Gaussian
broadening of 19 cm−1 is used.

MEDIUM-RANGE STRUCTURE OF VITREOUS SiO2… PHYSICAL REVIEW B 79, 064202 �2009�

064202-13



vibrational ring mode prior to the calculation of the Raman
cross section gives a peak at �610 cm−1, in close correspon-
dence with the experimental Raman line D2 at 606 cm−1.

As shown in Table II, all models feature concentrations of
four-membered rings in excess of the estimate derived from
the intensity of the D1 line.11 The best description of this
feature is provided by model II. Its Raman spectrum features
a main peak which is shifted toward lower frequencies than
in the other two models, in closer agreement with the experi-
mental spectrum. While model I gives an overall accurate
description of the vibrational properties, it fails to give an
accurate description of the main Raman peak. Indeed, model
I shows a high concentration of four-membered rings com-
prising �42% of the O atoms, thereby considerably overes-
timating the value of 0.36% derived from the intensity of the
D1 line �Table II�.11 Consequently, the Raman spectrum of
model I mainly arises from oxygen bending motions in four-
membered rings, resulting in a principal Raman peak at
�500 cm−1, significantly shifted toward higher frequencies
with respect to its experimental counterpart ��450 cm−1�.
Indeed, the projection on oxygen bending motions in four-
membered rings prior to the calculation of the Raman cross
section results in a very intense peak at �510 cm−1, in good
agreement with the experimental position of the D1 line
��495 cm−1�.

C. Parametric model for Raman coupling

Since the relevant coupling tensor �� /�R associated to
the dominant oxygen bending motions is almost isotropic, a
scalar coupling factor can be calculated for each O atom:

f I =
1

3
V Tr��

k

��

�RIk
eIk

b 	 , �45�

where eb corresponds to the bisector direction of the Si-O-Si
unit to which the O atom belongs.11 The coupling factors f I
defined in this way are independent of volume. Figure 16
shows the correlation between the calculated coupling fac-
tors f I and the Si-O-Si bond angle �I for our three models.
All models consistently give the same dependence.

The observed dependence can be expressed by the
relation11

f I = ��/3�cos��I/2� , �46�

which holds for a system of regular tetrahedral units de-
scribed within the bond-polarizability model.11 The param-
eter � is one of the three parameters of this model �see Ap-
pendix B�. For each model, we derived an optimal value of �
through a one-parameter least-squares fit of the coupling fac-
tors in Fig. 16. The obtained values differ by at most a few
percent from the value of � obtained through a global opti-
mization of the data of all models. The obtained values of �
are summarized in Table VI.

The good description provided by the relationship in Eq.
�46� lends support to the use of the bond-polarizability
model80 as a viable parametric model for the Raman cou-
plings. The use of the bond-polarizability model is further
supported by previous successful applications to
�-quartz,79,81 vitreous SiO2,82,83 and compressed v-SiO2.83

We therefore completed the set of bond-polarizability param-
eters by determining the two other parameters, � and � �cf.
Appendix B�, to be associated to the parameter � fixed
above. We obtained optimal � and � parameters by minimiz-
ing the sum of squared differences between the components
of the tensor �� /�R calculated within the bond-polarizability
model and within our first-principles scheme. This procedure
resulted in the parameters summarized in Table VI. In Fig.
17, we show the HH Raman spectrum of model I calculated
through this set of bond-polarizability-model parameters.
The comparison with the corresponding first-principles spec-
trum demonstrates the quality of our parametric model.

In a previous study, the coupling tensors �� /�R were ob-
tained by treating the electric field in a perturbative
manner.11,47 Application to model III led to an optimal value
of �=46.5 bohr2, slightly larger than the value obtained in
the present work for the same model through the use of finite
electric fields �cf. Table VI�. The difference between the two
calculations originates from the incomplete k-point �viz.
�-point-only� sampling used in the two schemes and pro-
vides an estimate of the error of the calculations.31 Since the
coupling to bending modes dominates the HH Raman spec-
tra, this difference mostly results in a change in normaliza-
tion, affecting the comparison with experiment in a minor
way.
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FIG. 16. Raman coupling factors f I vs Si-O-Si angle, calculated
for O atoms in model I �circles�, model II �diamonds�, and model III
�squares�. The dashed curve corresponds to the fit of the coupling
factors of model I according to Eq. �46�.

TABLE VI. Bond-polarizability-model parameters �expressed in
bohr2� as derived from models I–III and from all models taken
together. The second column specifies the way the electric field was
applied in the calculation of the coupling tensors, i.e., either through
a finite field �FF� or according to perturbation theory �PT�. The PT
parameters for model III and for �-quartz are taken from Refs. 11
and 79, respectively.

� � �

All models FF 39.3 8.8 2.2

Model I FF 40.8 9.3 2.4

Model II FF 41.2 8.9 2.1

Model III FF 38.5 8.4 2.3

Model III PT 46.5 10.3 2.2

�-quartz PT 45.5 11.6 3.3
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As a final remark concerning the derived parameters, it is
worth emphasizing that these parameters mainly depend on
the properties of the Si-O bond rather than on the type of
disorder occurring in the network. In Table VI, we report the
optimal bond-polarizability parameters derived for �-quartz
through a perturbation approach.79 Having expressed these
parameters in the same units as the other parameters in Table
VI, we can compare them with those for model III of v-SiO2
derived through a similar perturbation approach.11,47 This
comparison clearly indicates that the derivatives of the po-
larizability of the Si-O bond in vitreous silica are very close
to those of the Si-O bond in �-quartz.

IX. CONCLUSIONS

In this work, we addressed the vibrational spectra of vit-
reous silica through a comparative study involving three
model structures. All the investigated models consist of
corner-sharing tetrahedra with very similar short-range-order
properties. However, the models differ considerably as far as
their medium-range properties are concerned, such as the
Si-O-Si bond-angle distribution and the ring statistics. In par-
ticular, we introduced in the present work a model structure
�model I� which incorporates several structural features in-
ferred from previous investigations, in the attempt of im-
proving the comparison between experiment and theory.

The validation of structural models occurs through the
consideration of the results of a large set of experimental
techniques, including not only typical structural probes, such
as neutron and x-ray diffractions, but also vibrational spectra
as obtained through inelastic neutron scattering, infrared ab-
sorption, and Raman scattering. One specific goal of the
present investigation is to determine to what extent specific
experimental features are informative about the underlying
medium-range structural properties of the silica network.

Our investigation started by considering the neutron and
x-ray structure factors. Overall, the comparison between cal-
culated and measured total structure factors is very good for
all considered models, indicating that these structure factors
are not sufficiently sensitive to the medium-range structure.
Similar agreement also holds for the Si-O and O-O partial
structure factors. However, the Si-Si partial structure factor
is found to be very informative about the Si-O-Si bond-angle

distribution, allowing for discrimination between models
through comparison with experiment.

We then considered three kinds of vibrational spectra: the
inelastic neutron spectrum, the infrared spectra, and the Ra-
man spectra. For the inelastic neutron spectrum and the vari-
ous infrared spectra, the agreement with experiment was
found to be generally quite good, irrespective of the consid-
ered models. This indicates that these spectra only provide
limited information on the medium-range structure. The only
exception concerns the feature at �800 cm−1, which shows
a clear correlation with the average Si-O-Si bond angle,
shifting to higher frequencies when the average angle de-
creases. At variance, the parallel-polarized Raman spectrum
is shown to be highly sensitive to the medium-range organi-
zation of the network. This high sensitivity directly stems
from the predominance of the Raman coupling to oxygen
bending motions. Through this dependence, the distribution
of the Raman intensity between 300 and 700 cm−1 appears
to be very informative about the concentrations of three-
membered and four-membered rings. Recent estimates de-
rived from experimental Raman spectra give very small con-
centrations of both three-membered and four-membered
rings. Typical model structures of 100–200 atoms overesti-
mate at least one of these concentrations by 1–2 orders of
magnitude. The adverse effect on the Raman spectrum is
particularly severe when the concentration of three-
membered rings is overestimated because the corresponding
feature falls above the principal Raman peak and is clearly
distinguishable. The effect is less apparent for four-
membered rings which yield a peak lying in the range of the
principal Raman peak.

The Si-Si partial structure factor, the position of the peak
at �800 cm−1 in the three vibrational spectra considered in
this work, and the strong dependence of the Raman spectrum
on the concentrations of small rings are features that can be
used for refining structural models of v-SiO2. Among the
three models in this work, model I reproduces in the best
way the experimental Si-Si partial structure factor and the
position of the peak at �800 cm−1 in the measured vibra-
tional spectra, thereby lending support to its Si-O-Si bond-
angle distribution. This distribution is characterized by an
average angle of 148° and a standard deviation of 13°. The
Raman spectra calculated for the three models show dramatic
differences which can be assigned to their different ring sta-
tistics. The observed differences between the calculated and
the measured Raman spectra are consistent with the concen-
trations of small rings in the models. The principal Raman
peak at 450 cm−1 is best reproduced by model II, which also
best describes the concentrations of small rings. Model I also
gives a fair description of the main Raman peak, but its
intensity is found to be slightly shifted to higher frequencies
because of an excess of four-membered rings. Hence, this
study indicates that the considered experimental data are glo-
bally consistent with a medium-range structure characterized
by an average Si-O-Si bond angle of 148° and with small-
ring concentrations as derived from the intensity of the ex-
perimental Raman defect lines. Our work provides an illus-
tration of how structural models of v-SiO2 can successively
be improved by establishing a virtuous cycle that involves
comparison between theory and experiment. A similar ap-
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FIG. 17. Reduced HH Raman spectrum of model I calculated
with globally optimized bond-polarizability parameters �dotted
curve�, compared to the corresponding spectrum calculated fully
from first principles �solid curve�. A Gaussian broadening of
19 cm−1 was used.
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proach has recently also been applied to the modeling of
vitreous GeO2 and vitreous GeSe2.19,21

The present study also provides parametric models to de-
scribe the infrared and Raman couplings. For the infrared
coupling, we first focused on the Born charge tensors of the
oxygen atoms, finding a parametrization of both the isotropic
and the traceless anisotropic components in terms of the Si-
O-Si bond angle. The Born charge of the silicon atoms was
then determined through the application of the local dynami-
cal charge neutrality condition. For the Raman coupling, we
opted for a description in terms of the bond-polarizability
model. We demonstrated the reliability of both parametric
models in reproducing the vibrational spectra by comparison
with spectra calculated from first principles.
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APPENDIX A: CALCULATION OF RAMAN COUPLING
TENSORS BY FINITE DIFFERENCES

We calculated the tensors ��ij /�RIk of model I as second
derivatives of the atomic forces with respect to the electric
field, according to Eq. �43�. We obtained these second de-
rivatives numerically through the application of finite electric
fields.13

For the diagonal terms ��ii /�RIk, we used the following
formula:

� �2F

�2E�0

�
1

12h2 �− F�− 2h� + 16F�− h� − 30F�0� + 16F�h�

− F�2h�� , �A1�

where F�E� indicates the desired atomic force component as
a function of the finite field E taken along a Cartesian direc-
tion. We took electric fields defined by h=0.0025 a.u.

For the off-diagonal �i� j� terms of ��ij /�RIk, we used the
following finite-difference scheme, which can be derived
from the Taylor development of atomic force component
F�Ei ,E j� in terms of the electric fields Ei and E j �Ref. 84�:

� �2F

�Ei � E j
�

0

�
1

4h̃2
�F�h̃, h̃� + F�− h̃,− h̃� − F�− h̃, h̃�

− F�h̃,− h̃�� , �A2�

where we took h̃=h /�2 to preserve the same stride as for the
diagonal terms. The calculation of the mixed term relies on
the possibility of applying simultaneously finite fields along
two different Cartesian directions. This feature has been
implemented in the CP code of the QUANTUM-ESPRESSO

package.27 Figure 18 shows the number of finite electric field

calculations that are required for evaluating the tensors
��ij /�RIk pertaining to a couple of Cartesian directions. The
full tensors are obtained through 25 self-consistent minimi-
zations. No sensible variation in the calculated spectra was
found when the second-order derivatives in Eq. �43� were
estimated with a three-point formula.

APPENDIX B: PARAMETERS OF BOND-
POLARIZABILITY MODEL

In the bond-polarizability model, the polarizability is de-
scribed in terms of bond contributions:

�ij =
1

3
�2�p + �l�
ij + ��l − �p��RiRj

R2 −
1

3

ij	 , �B1�

where R=RJ−RI is a vector which defines the direction and
the distance of a pair of nearest-neighbor atoms at sites RI
and RJ. The parameters �l and �p correspond to the longitu-
dinal and perpendicular bond polarizabilities, respectively.
The bond-polarizability model further assumes that the bond
polarizabilities �l and �p only depend on the length of the
bond. Thus, the derivative of the bond polarizability with
respect to the displacement of atom J reads

��ij

�RJk
=

1

3
�2�p� + �l��
ijR̂k + ��l� − �p���R̂iR̂j −

1

3

ij	R̂k

+
��l − �p�

R
�
ikR̂j + 
 jkR̂i − 2R̂iR̂jR̂k� , �B2�
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FIG. 18. Schematic illustration of the number of independent
finite electric field calculations that are required for evaluating the
diagonal �disks� and off-diagonal �filled squares� components of the
tensors ��ij /�RIk pertaining to a couple of Cartesian directions.
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where R̂ is a unit vector along R, and �l� and �p� are the
derivatives of the bond polarizabilities with respect to the
bond length. Therefore, when only one type of bond occurs,
the bond-polarizability model is completely defined by three
parameters:

� = 2�p� + �l�, � = �l� − �p�, � = ��l − �p�/R . �B3�

In this approximation, the tensors �� /�R appearing in Eq.
�43� are obtained by dividing the tensor �� /�R by the vol-
ume V.
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